Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260776

ABSTRACT

The novel coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has ravaged global healthcare with previously unseen levels of morbidity and mortality. To date, methods to predict the clinical course, which ranges from the asymptomatic carrier to the critically ill patient in devastating multi-system organ failure, have yet to be identified. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a novel network of protein-metabolite interactions in COVID-19 patients through targeted metabolomic and proteomic profiling of serum samples in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity, such as acute kidney injury. Finally, we developed a novel composite outcome measure for COVID-19 disease severity and created a clinical prediction model based on the metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and furthermore shows high predictive power of 0.83-0.93 in two previously published, independent datasets.


Subject(s)
COVID-19
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2009.02131v1

ABSTRACT

Currently, many countries are facing the problems of aging population, serious imbalance of medical resources supply and demand, as well as uneven geographical distribution, resulting in a huge demand for remote e-health. Particularly, with invasions of COVID-19, the health of people and even social stability have been challenged unprecedentedly. To contribute to these urgent problems, this article proposes a general architecture of the remote e-health, where the city hospital provides the technical supports and services for remote hospitals. Meanwhile, 5G technologies supported telemedicine is introduced to satisfy the high-speed transmission of massive multimedia medical data, and further realize the sharing of medical resources. Moreover, to turn passivity into initiative to prevent COVID-19, a broad area epidemic prevention and control scheme is also investigated, especially for the remote areas. We discuss their principles and key features, and foresee the challenges, opportunities, and future research trends. Finally, a node value and content popularity based caching strategy is introduced to provide a preliminary solution of the massive data storage and low-latency transmission.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL